Marching up the wrong tree

Before Darwin published his theory of evolution through natural selection, On the Origin of Species, evolution wasn’t a new concept. It had been discussed by many different people of science as early as the Ancient Greeks. It was how evolution happened that no one was able to explain satisfactory until Darwin (and Alfred Russel Wallace, who independently came to the similar theory). When it was published, it caused a huge stir. The Victorians couldn’t break away from their long-held beliefs that God had created ‘man’ in his image, and that humans were separate from the animal kingdom. Presenting this valid theory of evolution would sever the power of the Church, which at the time was the head of most things and most people.  In anticipation for backlash against Darwin, his close friend, Thomas Henry Huxley, wrote to him ‘I am sharpening up my claws and beak in readiness.’ 

I’m a little fan of Thomas Henry Huxley. Despite being well-known for his quick wit and sometimes fearsome demeanour, he was a loving family man, and a very good friend to those he liked. He wrote numerous natural history books, with the aim of making science accessible to the non-expert. One of these, Man’s Place in Nature (1863), focuses on human evolution and our common ancestor. In it, there is a famous illustration by Benjamin Waterhouse Hawkins, which shows the skeletons of a gibbon, orang-u-tan, chimpanzee, gorilla and human.

Tby Waterhouse Hawkins
Benjamin Waterhouse Hawkins illustration in Huxley’s Man’s Place in Nature. (Image Public Domain)

I’ve noticed that this illustration does looks rather similar to The March of Progress, an image that has fed to the misunderstanding of human evolution, and has been written about numerous times by many great science writers (including Stephen Jay Gould and Riley Black). Originally called The road to Homo sapiens, this iconic image was commissioned for Early Man, one of a series of books by Life-Time Books. It shows 15 extinct primates lined up from left to right as if one species evolves into the next. A ladder of human evolution, with the magnificent Homo sapiens at the very pinnacle. It is of course wrong. But that hasn’t stopped it being reused and rejigged for a myriad of different uses from advertising to prints on T-shirt. It is so popular and constantly used in mainstream media because it is so simple: one species evolves into another, better species: humans are at the end of this ‘progress’.

The March of Progress
The March of Progress, by Rudolph Zallinger. (Image Public Domain)

Some years ago, historian Jennifer Tucker suggests that the image from Man’s Place in Nature actually does indicate evolution, and highlights, the ‘chain of being’, which is a Christian thought of a hierarchical structure in nature, with minerals and plants under animals, and animals under humans, and humans being at the top, just below angels and God. The ‘chain of being’ was first thought of by Ancient Greek philosophers, and adapted in the Middle Ages to focus on God’s main creation: humans. Whilst there are similarities between Huxley’s skeletons and March of Progress, I can’t see it illustrating humans at the pinnacle of evolution: Huxley wasn’t one to jump onboard the Christian bandwagon, and he understood Darwin’s ideas well, having read proofs of his book and discussed them with him in letters and in person. The illustration was a comparison of the skeletons of apes, not an evolutionary diagram, and Huxley makes no reference to it being such in Man’s Place in Nature.

I wanted to find out if the March of Progress was inspired by this the Waterhouse Hawkins illustration. The art work was created by Rudolph Zallinger, who painted the beautiful Age of Reptiles mural at the Yale Peabody Museum. I contacted the museum at Yale to see if they knew any more about the March of Progress illustration, and I was introduced to Zallinger’s daughter, Lisa. Sadly we don’t know what inspired him: “…it is tough to say what my father actually drew from or referred to in order to depict that March. We do not know.”

But, Lisa gave a lot more information about the background into the development of this art. The illustrations were based on the science known at the time, as Lisa told me in an email: “…he consulted many of the prominent anthropologists and scientists at Yale for assistance. He was very keen on representing all we knew about the various [hominins]…both in terms of dating, which came before the other in the sequence, and in terms of the bones of each that had actually been recovered.”

Zallinger’s original ideas for illustrating for this Time-Life Book were very different to how they ended up: “His initial drawings were actually groupings of these bones, next to a representation of what that particular [hominin] might have looked like.” He worked with scientific colleagues to illustrate correctly the pose and posture of each one. The Editor for the Early Man book wasn’t keen on Zallinger’s ideas: “the editor did not believe that these depictions would be compelling or striking enough to excite the readers. It was the editors suggesting that they be depicted in a ‘March’.” But Zallinger wasn’t just an artist, he knew about evolution, and his illustrations were always based on the most up to date scientific knowledge of the time. “My father was not really keen on this portrayal, because he was already very aware that [hominin] evolution was more likely akin to the branching of a tree rather than a straight, linear march, so he resisted this depiction. The editor won out, however, and the iconic image was born.”

Discovering the background into how this renowned illustration was conceived is as fascinating as the art itself. Despite Zallinger working closely with artists, and having a good understanding of evolution, it was the need for something to excite readers, and something that would be visually easy to understand that won the day. This one decision has created perhaps the biggest, most dangerous, misunderstanding of evolution that has ever existed. In all its simplicity, it shows progress. An improvement from what came before. The idea that animals get better as they evolve is wrong. Every animal and plant alive today is just as evolved as each other. None is more ‘primitive’. None is ‘simple’. And certainly none are inferior to others. Each is specially adapted for their environment, some more specialist than others, and some more generalist.

Evolution is quite simple when you break it down. When an egg is fertilised, genes from the mother and father are passed on. Sometimes, small changes can happen where DNA doesn’t replicate exactly as it should have, and these may create new genes for new features (a slightly longer beak for example). If it is harmful, then the young animal won’t survive, and that trait is lost in the population. If it proves useful (a slightly longer beak could mean it can get food from a new place), this trait is passed down to the next generation, where eventually the whole population has it, and a new species is born. We can look at fossils, and even genetics, to see the evolution of species in the past. Humans are no different. Our species evolved around 300,000 years ago in Africa, and our family was once more diverse than you can imagine.

The many different species of humans going back 1 million years. Notice how there were several different species on our planet at once. (Image from Galway-Witham, Cole and Stringer, 2019)

There were dozens of different species of hominins (upright walking apes), many of which lived alongside others. It wasn’t a ladder with one species evolving straight into the next, it was a tree; a big, bushy tree. As small populations moved out and explored away from other populations, they adapted to the different environments. Small changes, passed down through their genes, allowed them to survive better in these new environments where they became a new species. It may be a little more complicated because some species were still mating and mixing genes, so anthropologist John Hawks says it was more like a big river delta.

We were never inevitable. Steven Jay Gould once wrote that if we were to go back to the beginning of life and start it all over, life today would be very different, and there would be no humans around. That’s a big thing to think about. We are not special. We are not better, or ‘higher’ than other animals. Evolution was not primed to make us here today. We are just here. Now. But, there is something special about us. We have the power to change our environment around us. Not just locally, but globally. Presently we are taking advantage of that environment, destroying it, and causing the extinction of countless species every year. Species that have evolved and adapted over millions of years. But, we can use that power, our understanding of our actions, to protect this beautiful, fragile planet we live on. There is no march of progress. There is no ‘road to Homo sapiens’. There is Earth, and the immeasurable different types of beautiful animals and plants that we share the planet with. 

Written by Jan Freedman (@JanFreedman)

Further reading:

Posted in Homo sapiens | Tagged , , , , , | Leave a comment

G(e)nomic Wisdom

When I first started doing ancient DNA way back in two thousand and [polite cough], every base pair was a win. Nature papers were published with less sequence than you’d now expect a fresher to produce in their first lab practical. The exciting thing about being in a new and expanding field was the way in which new records were constantly being broken, week by week. The first ancient mitochondrial genome. The first middle Pleistocene DNA, the first nuclear DNA, the first time-stamped dataset, the first Neanderthal genome. All of these ground breaking studies were published while I was a young PhD and post-doc. All of them received enormous amounts of publicity, and rightly so. Each pushed the boundaries in a way that only new research techniques can. My very first paper was published in a reasonably high profile journal and consisted of only a couple of kilobases of data. You’d be lucky to get that published in a Christmas round robin these days.

I distinctly remember lab meetings as a young PhD where serious discussions happened about whether we would ever be able to produce an ancient nuclear genome. And this was amongst other ancient DNA specialists. We just didn’t know. My own early work painstakingly teasing a few base pairs of ancient mitochondrial DNA out of well-preserved sabretooth fossils, while momentous at the time, definitely got my mind spinning over whether one day we would ever get a complete nuclear genome from any extinct cat. While the mitochondrial DNA can tell us about maternal lineages and some demography, the nuclear DNA is the real deal. This is the DNA that is inherited from both mother and father and codes for practically everything that makes up an organism. Whether hair is long or short, patterned or plain, dark or light. How each part of the organism integrates with the whole. The nuclear DNA is the blueprint for life itself and can tell us about phenotype but also about population change, population size, and evolutionary selection pressures, amongst many other things.

Periodically, as sequencing technologies have progressed, I’ve revisited the idea of getting complete genomes from ancient cats. Earlier this year we published the first ancient genomes from a range of extinct lions [de Manuel, Barnett et al.]. But throughout all this, one species has exerted a siren call over me. My favourite extinct species, a ghost of the ice age steppe, and shoe-in for most impressive cat ever to have lived. I’m talking of course about our old friend the Scimitar cat, Homotherium latidens.

We have recently [Westbury, Barnett et al. 2020] published the first ancient nuclear genome of a sabretooth cat. The work is intimately tied to the work I did on ancient lion genomes while working as a postdoc in Copenhagen on a Marie Curie research fellowship. The MCRF work had me focusing on lion genomics, including that of the cave lion (Panthera spelaea). To get good samples, I relied on my friend Dr Grant Zazula who is the state palaeontologist for the Yukon government. He was able to send me some fresh cave lion bones straight out of the Yukon permafrost. These ancient bones had been on ice for 20 thousand years and had excellent DNA preservation. Getting genomes from ancient bones involved first grinding up small bits of them and applying various bucket chemistry tricks to remove the protein/fat/mineral content to leave the DNA behind. This DNA then gets chemically joined to artificially produced DNA that incorporates various binding sites and a unique DNA barcode that allows each fragment to be reliably separated out. This soup of barcoded DNA bits is known as a library, and can be amplified by standard PCR methods and then run on a pyrosequencing machine to produce billions of reads of DNA that represent all the DNA in your extract. Once the initial library is created it will be sequenced as a matter of course to check what percentage of the extracted DNA is actually from the organism you are interested in versus background DNA from contaminants/humans/bacteria/fungi. Obviously the higher percentage of organismal DNA you have to start with the easier (and more importantly, cheaper) it will be to generate enough sequence data to stitch together a complete genome. For some of the cave lion bones Grant sent me, we got phenomenal levels of endogenous content, and those samples ended up on the lion genome paper. One of the samples was a little different though. When I got back that first initial library sequencing, I was sitting on my sofa at home, using my laptop to check how much lion there was in the mix. This involved comparing all the tiny, barcoded fragments to a reference standard of a modern lion mitochondrial genome (although we were ultimately interested in the nuclear genome, comparing how much mtDNA is in the library is easier to do and gives an idea of overall endogenous content that is reliable enough). While sitting and looking at all the snaking lengths of A, G, C, and T in their multi-coloured formatting I noticed something that made me sit bolt upright and nearly knock my laptop off my knees. One tiny corner of the mtgenome of the lion is seared into my mind nearly as deeply as the opening lines of Genesis. The sequence of lion ATP8 was part of the very first lion DNA I ever sequenced for my PhD and I long ago lost count of how many hours I have spent reading, and rereading, the unique sequence of this gene to check and double check that my results were good. It’s as known to me as my first address, my mother’s maiden name, my first pet. I’m never going to forget it. What shocked me into nearly dropping my laptop off my lap is that I recognised that the library sequence I had generated was not cave lion ATP8 but belonged to another cat that over the years I had known almost as intimately. The absence of just three basepairs at a critical point in the ATP8 sequence made all the hairs on the back of my neck stand to attention for I knew that only one other species had that particular deletion: Homotherium.

This bone was not a cave lion. It was a scimitar cat. One of only a handful ever recovered from the Yukon region. And what’s more it was phenomenally preserved. I think I made the decision there and then that we had to try and sequence this sample more fully and get the total nuclear genome out. Over the next six years, that’s exactly what we did, thanks to the generosity and enthusiasm of the Copenhagen Centre for GeoGenetics leader Tom Gilbert and many working members of the group. To name just two, Dr. Marce Sandoval-Velasco was crucial in generating more libraries of Homotherium after my fellowship had ended. Dr. Mick Westbury had the skills and enthusiasm to take the raw genomic data Marce and I generated, and piece it back together into a coherent whole. He also had the talent to apply the latest genomic analyses to the dataset and finally resolve some of the mysteries that shrouded Homotherium.

We were able to use the nuclear genome in a number of interesting ways. First of all, we were able to give an accurate date for when Homotherium, and by extension all the sabretooh Machairodontinae subfamily separated from the modern cats. Palaeontology had placed Homotherium, Smilodon, Xenosmilus and a bunch of other genera on their own twig of the cat family tree. We had previously estimated the separation using the mitochondrial genome but this can give false inferences if there has been any hybridisation (as seen extensively in modern cats, and our own human lineage) or sex-biased dispersal (e.g. if females stay in one place and males travel long distances between groups, as seen in lions). The nuclear data gave a fairly tight estimate of 22.5 million years (also within the bounds estimated from the mitochondrial genome previously) which puts the split pretty squarely at the Oligocene/Miocene boundary or beginning of the Miocene. Immediately, this suggests that the split between machairodonts and felines could be part of larger ecological processes happening at this geological turning point.

A phylogenetic tree based on nuclear data showing the position of Homotherium between the felinae and the Hyaenidae.

Tied into this, we were very interested in testing whether we could detect any signs of hybridisation between Homotherium and other felids that it would have encountered when alive. Pleistocene Homotherium ranges would have overlapped with cave lions (Panthera spelaea spelaea), American lions (Panthera spelaea atrox) leopards (Panthera pardus), tigers (Panthera tigris), and jaguars (Panthera onca), showing how global its distribution was. We see signs in the nuclear genome of modern cats that there has been admixture between lions and snow leopards, lions and tigers, lions and jaguars, and various combinations of their ancestral lineages. So, clearly big wild felids are not super discerning in who they mate with and if we could find signals of admixture between sabretooths and Panthera cats that could tell us something pretty interesting.  However, in complete contrast to the Panthera cats we found no signal of any hybridisation in the Homotherium genome. It seems the scimitar cat either kept completely to itself, or any signs have been completely purged from the genome after the fact. Sad to think we never had any baby sabre-toothed lions.

Using some fancy statistical inference methods we were also able to look at demographics (population change) in Homotherium. The basic theory is that population size and genetic diversity are intimately linked (this makes intuitive sense, the larger the population the more mutations are likely to creep in). Reconstructing this from the nuclear genome of a single individual sounds strange, but remember that each genome contains information on the diversity of the mother and father as we inherit one copy of each gene from both. The appearance of heterozygosity (where DNA differences between the gene from mother and father are found) tells us about genetic diversity and hence population size. Intriguingly, despite being just about the rarest species in the Pleistocene fossil record, Homotherium seems to have had an effective population size comparable to lion, leopard, jaguar and tiger, and much greater than the cheetah or Iberian lynx. Something doesn’t add up. Maybe it’s just that because fossil cats are difficult to tell apart from most of their bones that there has been gross misidentification and all those missing Homotherium have been shut away in drawers full of cave lion or Smilodon.

Graphic representation of nuclear autosomal heterozygosity (proxy for population size) compared between Homotherium and some species of living cat.

Another potential explanation is taphonomy. Maybe Homotherium just mostly lived in places where fossilisation was exceptional and the few scraps we have are from very lost individuals.

However, the most likely explanation is that Homotherium simply lived a very mobile life over its enormous range and this inflated the genetic diversity present in its genome.

To me, the most fascinating aspect of our genomic work has been our attempt at getting information on the phenotype from our long dead gene reads. At the moment this feels very primitive, but like all first steps it has the potential to go somewhere wonderful. We looked at which regions in the Homotherium genome were under positive selection (basically, which parts of the genome have changed and produced functional differences when compared to the same part of the genome in closely related species). When we did this we saw that genes involved with some pretty interesting things seem to have been pushed hard during the scimitar cats evolution. There were genes involved with vision and circadian rhythm, strongly suggesting that Homotherium was a diurnal hunter i.e. one that was active during the daytime and needed exceptional eyesight. There were genes involved with fat-burning, oxygen processing, respiration, and the vascular system pointing towards an active lifestyle of fast pursuit of prey similar to the cheetah or wolf, rather than the ambush hunting style of most cats. There were tantalising hints of something interesting going on in genes associated with increased sociality in model organisms, maybe pointing to Homotherium as a pack animal that could live in small hunting groups.

A graphical representation of which Homotherium genes we found under positive selection and what aspects of biology they are associated with in model organisms. 

Unfortunately we weren’t able to recover to a decent standard some of the genes we know are involved with coat colour and appearance in cats. Genes like MC1R, ASIP, SLC45A2, TYR, FGF5 could have given us amazing insights into the life appearance of sabrecats, which would do so much to place them into their extinct niche. Modern big cats are almost entirely defined by their pelage (their skeletons are practically identical, with only minor differences) and the difference between lion and tiger is nearly all in the mane or stripes.

So, there it is. 22 year old me is faintly impressed by 40 year old me, in having a large part to do with the first sabretooth genome. May all of you stick around long enough to see some of your own dreams come to life.

A wonderful reconstruction by Velizar Simeonovski of a pair of Homotherium latidens hunting a caballine horse during the boreal winter daytime. Painting was commissioned by us to showcase some of the inferences of our paper.

Written by Ross Barnett (@DeepFriedDNA)

Further Reading:

Anton, M., M. J. Salesa, A. Turner, A. Galobart, and J. F. Pastor. 2009. “Soft tissue reconstruction of Homotherium latidens (Mammalia, Carnivora, Felidae). Implications for the possibility of representations in Palaeolothic art.” Geobios no. 42 (5):541-551. [Abstract]

Barnett, R. 2014. “An inventory of British remains of Homotherium (Mammalia, Carnivora, Felidae), with special reference to the material from Kent’s cavern.” Geobios no. 47 (1-2):19-29. [Full Text]

Barnett, R. 2019. The Missing Lynx. London: Bloomsbury.[Book]

Barnett, R., I. Barnes, M. J. Phillips, L. D. Martin, C. R. Harington, J. A. Leonard, and A. Cooper. 2005. “Evolution of the extinct sabretooths and American cheetahlike cat.” Current Biology no. 15 (15):R589-R590.[Full Text]

Barnett, Ross, Michael V. Westbury, Marcela Sandoval-Velasco, Filipe Garrett Vieira, Sungwon Jeon, Grant Zazula, Michael D. Martin, Simon Y. W. Ho, Niklas Mather, Shyam Gopalakrishnan, Jazmín Ramos-Madrigal, Marc de Manuel, M. Lisandra Zepeda-Mendoza, Agostinho Antunes, Aldo Carmona Baez, Binia De Cahsan, Greger Larson, Stephen J. O’Brien, Eduardo Eizirik, Warren E. Johnson, Klaus-Peter Koepfli, Andreas Wilting, Jörns Fickel, Love Dalén, Eline D. Lorenzen, Tomas Marques-Bonet, Anders J. Hansen, Guojie Zhang, Jong Bhak, Nobuyuki Yamaguchi, and M. Thomas P. Gilbert. 2020. “Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens.” Current Biology. [Full Text]

de Manuel, M., R. Barnett, M. Sandoval-Velasco, N. Yamaguchi, F. G. Vieira, M. L. Zepeda Mendoza, S. Liu, M. D. Martin, M. H. S. Sinding, S. S. T. Mak, C. Carøe, S. Liu, C. Guo, J. Zheng, G. Zazula, G. Baryshnikov, E. Eizirik, K. P. Koepfli, W. E. Johnson, A. Antunes, T. Sicheritz-Ponten, S. Gopalakrishnan, G. Larson, H. Yang, S. J. O’Brien, A. J. Hansen, G. Zhang, T. Marques-Bonet, and M. T. P. Gilbert. 2020. “The evolutionary history of extinct and living lions.” Proceedings of the National Academy of Sciences of the United States of America no. 117 (20):10927-10934.[Full Text]

Meachen, Julie A. 2017. “Ancient DNA: Saber-Toothed Cats Are the Same Beasts After All.” Current Biology no. 27 (21):R1165-R1167. doi: 10.1016/j.cub.2017.09.024.[Full Text]

Paijmans, J. L. A., R. Barnett, M. T. P. Gilbert, M. L. Zepeda Mendoza, J. W. F. Reumer, J. de Vos, G. Zazula, D. Nagel, G. Baryshnikov, J. A. Leonard, N. Rohland, M. Westbury, A. Barlow, and M. Hofreiter. 2017. “Evolutionary history of sabre-toothed cats based on ancient mitogenomics.” Current Biology no. 27 (21):3330-3336.[Full Text]

Widga, C., T. L. Fulton, L. D. Martin, and B. Shapiro. 2012. “Homotherium serum and Cervalces from the Great Lakes Region, USA: Geochronology. morphology and ancient DNA.” Boreas no. 41 (4):546-556.[Abstract]

Posted in American Lion, Cave Lion, Cheetah, DNA, European Jaguar, Leopard, Lynx, Sabre tooth Cat | Tagged , , , , , , , , | 9 Comments

The Story of the King Rabbit

‘And he said, “Very well, I will bless your bottom as it sticks out of the hole. Bottom, be strength and warning and speed for ever and save the life of your master. Be it so!” And as he spoke, El-ahrairah’s tail grew shining white and flashed like a star: and his back legs grew long and powerful and he thumped the hillside until the very beetles fell off the grass-stems. He came out and tore across the hill faster than any creature in the world.’

Dandelion telling the story of ‘The Blessing of El-ahrairah’

In Watership Down, 1972

And so, this is how rabbits told the story of how they came to be. Frith created rabbits for speed and cunning to escape from the ‘Thousand Enemies’. Many people have looked at the religious links in Watership Down, but recently the daughters of the author, Richard Adams, revealed the truth: “It’s just a story about rabbits.” And it is: a story about rabbits. Rabbits who have created a history of how they came to be on Earth. (It is a wonderful tale, and I will admit the animated film brought an awful lot of tears.)

Dandelion told many stories to Hazel, Fiver, Bigwig (oh, big, soft-hearted Bigwig) and the other rabbits of the warren. The story of Rowsby Woof and the Fairy Wogdog, The trial of El-ahrairah, and more helped the rabbits link the real world to their lives. If they had known about this beast, I imagine Dandelion would have told the The story of the King Rabbit.

The reality would have been even greater than Dandelion’s legend.

The Watership Down movie poster, with poor Bigwig in a snare. (Image Public Domain)

The story would, as a good tale does, start on an island. Islands are wonderful places for species to evolve into some extraordinarily strange shapes and sizes. With more food around and less predators, small animals tend to evolve to be bigger, and larger animals evolve to be smaller. We’ve seen this numerous times, with dwarf elephants and dwarf hippos on Crete, the giant dormouse, the dodo, the enigmatic mouse-goat, and even within our own Genus, with the ‘hobbit’ Homo florensiensis. It’s actually a real rule known as Foster’s rule: given enough time, and separated from mainland populations, large animals will shrink over time, and small animals will get bigger over time.

Around 6 million years ago the Mediterranean Sea was empty. Temperatures were hot, and there was no Strait of Gibraltar, which meant as the sea evaporated, it wasn’t replenished, so slowly it dried out. This large exposed land was connected to Europe Syria and North Africa, and thousands of animals lived here. Periodically, it was flooded, until the small Strait of Gibraltar, just 9 miles wide, opened up and let waters from the Atlantic Ocean flow in and keep the Mediterranean Sea, well, a sea.

Several islands formed as the Mediterranean was flooded. Here, many animals were separated from populations on the mainland, and separated they were free to evolve to their new environment. And here one rabbit would become a king.

Map of the Mediterranean Sea. (Image Public Domain)

Over a hundred years ago, Dorothea Bate explored Mediterranean islands in the search for fossils. She discovered many extant and extinct animals, and opened up a new world of island fauna never seen before. Since then researchers are still visiting the cave sites Bate explored and excavated. And they are discovering new things. At a site on the small island of Minorca, Spain, in the 1980s researchers excavated a new fissure at one of Bate’s original cave sites, and found remains of an unknown rabbit. It would be more than 30 years before it would be properly described for science. 30 years before the king rabbit would be unleashed onto the world.

When the fossils were examined it was clear that it was a new species of rabbit, Nuralagus rex (‘the Minorcan king of the hares’) . It was ten times larger than the European rabbit. Ten times larger. That’s a pretty big rabbit. The bones gave even more surprises. Looking at the skull in detail, it appears that Nuralagus had much smaller ears than rabbits you are familiar with today. The vertebrae showed that it’s back was much stiffer than other rabbits, suggesting strongly that this giant was a very poor runner, if it ran at all, and couldn’t hop. What’s more, the feet bones indicated that it wasn’t adapted to digging burrows. This giant rabbit (and it was a rabbit) couldn’t be more un-rabbit like.

Our strange giant rabbit, Nuralagus rex, as big as a sheep.

Around 5 and a half million years ago, one population of rabbits became trapped as the Mediterranean Sea flooded. (Based on the morphology of the fossils, and the time periods the fossils have been found in, the more probable rabbit was Trischizolagus.) There was more food around, so this rabbit got bigger. With no predators, speed and large ears were lost throughout generations. We don’t know exactly when this rabbit vanished, and we need more fossils to help us understand when and why it became extinct. What we do know is that it was a rabbit never seen before, or since.

The Story of the King Rabbit is almost like something that Dandelion would tell to the group at Watership Down, and no doubt made Bigwig see a little of himself in the king. But it was real. And it lives on through the legacy of Dorethea Bate who opened up cave sites that are changing everything we thought we knew about the Mediterranean’s extinct creatures.

Written by Jan Freedman (@JanFreedman)

Further Reading:

Bover, P., et al. 2014. ‘The Late Miocene/Early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): an update.’ Integrative Zoology. 9. pp.183-196. [Abstract only]

Bover, P., & Alcover, J. A. 2003. ‘Understanding Late Quaternary Extinctions: the case of Myotragus balearicus (Bate 1909).’ Journal of Biogeography. 30. pp. 771-781. [Abstract only]

Brown, P., et al. 2004. ‘A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia.’ Nature. 431(7012). pp.1055-1061. [Full article]

Clauzon, G., et al. 1996. ‘Alternative interpretation of the Messinian salinity crisis: controversy resolved.’ Geology. 24. pp.363-366. [Full article]

Flynn, l., J., et al. 2013. ‘The Leporid Datum: a Late Miocene biotic marker.’ Mammal Review. 44(3-4). pp.164-176. [Full article]

Foster, J. B. 1964. ‘The evolution of mammals on islands.’ Nature. 202(4929). pp.234-235.

Ge, D., et al. 2013. ‘Evolutionary History of Lagomorphs in response to global environmental change.’ PLoS ONE. 8(4): doi.org/10.1371/journal.pone.0059668

Herridge, V. L., & Lister, A. M. 2012. ‘Extreme insular dwarfisms evolved in a mammoth.’ Proceedings of the Royal Society B: Biological Sciences. 279(4929). pp.234-235. [Full article]

Jalut, G., et al. 2000. ‘Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain.’ Paleogeography, Paleoclimatology, Paleoecology. 160. pp.225-290. [Full article]

Manzi, V., et al. 2013. ‘Age refinement of the Messinian salinity crisis onset in the Mediterranean.’ Terra Nova. 25. pp. 315-327. [Full article]

Mas, G., et al., 2018. ‘Terrestrial colonisation of the Balearic Islands: new evidence for the Mediterranean sea-level drawdown during the Messinian Salinity Crisis.’ Geology. 46. pp.527-530. [Abstract only]

Quintana, J., et al. 2011. ‘Nuralagus rex, Gen. Et. Sp. Nov., An endemic insular giant rabbit from the Neogene of Minorca (Balearic Islands, Spain).’ Journal of Vertebrate Paleontology. 31(2). pp.231-240. [Full article]

Shindler, 2004. ‘Bate, Dorothea Minola Alice.’ Oxford Dictionary of National Biography. doi: https://doi.org/10.1093/ref:odnb/67163

Shindler, K. 2005. ‘Discovering Dorothea: the life of the pioneering fossil hunter Dorothea Bate.’ Harper Collins Publishers. [Book]

The Guardian 2019. True meaning of Watership Down revealed ahead of TV revival. [Online]

Posted in Mouse Goat, Nuralagus | Tagged , , , , , , , , , | 1 Comment

The Evolutionary History of Extinct and Living Lions

I’m fairly obsessed with cave lions. If one were to open up my head and look at my brain’s RAM it would be something like 70% facts about extinct species of cat, 20% stuff that my wife and kids tell me to remember, 10% background processing needed to survive. As someone who has always been drawn to obscure knowledge, being one of the perhaps dozen or so people on the planet who has an in-depth appreciation of a species that went extinct 14,000 years ago deeply appeals to me.

Cave lions were magnificent apex predators that somehow managed to share the landscape with Eurasian peoples for three hundred centuries. During that time we painted them, we sculpted them, we hunted them, and were hunted by them in turn. They were as native to Europe as modern lions are to Africa and India. That’s the line I’ve taken in my book [shameless plug] The Missing Lynx, and learning about Pleistocene megafauna has forever changed the way I think about what is “natural”.

Our new paper in Proceedings of the National Academy of Sciences, PNAS (pronounced penis), is a massive collaborative effort that called on experts from the UK, USA, Spain, Denmark, China, Russia, Norway, Malaysia, Brazil, and Canada. The story starts way back in 2011. I was 31, with a 3 year old daughter and another on the way, and with friends in Copenhagen I used what little free time I still had left to write a Marie Curie grant application to look at the genomics of lions, with the idea of identifying genetic signals unique to the extinct North African Barbary lion. Project “Search for Innate Markers of Barbary Affinity”, or SIMBA for short, was envisioned as an international collaboration using my prior knowledge of lion genetics, the world-class facilities in Copenhagen for palaeogenomics, and the skills of experts in lion biology and genomic analysis to answer the question. Our collaborators had already assembled museum samples of lions from their complete natural range, including Pleistocene cave lions. I lived with my family in Copenhagen for two years with the sole aim of processing said lion samples and identifying the ones with the best preserved DNA to sequence more fully. At the end of that time we had produced genomic libraries from our best 14 samples: 1 cave lion from Siberia, 1 cave lion from the Yukon, 1 lion from Gabon, 1 lion from Sudan, 2 lions from Senegal, 1 lion from RSA, 2 extinct Cape lions, 3 extinct Barbary lions, 1 Iranian lion, and 1 Asian lion. For the first time we were able to use complete nuclear DNA, not just mitochondrial genomes to look at lion relationships. This was only supposed to be the first phase of Project SIMBA, with phase 2 being analysis of living zoo and menagerie individuals to screen for potential Barbary ancestry in the mix. As Barbary lions went extinct in the wild in the 1950s but were popular exhibits in even the first zoos of the post-medieval era, the possibility remains that some of our generic zoo lions could trace part of their ancestry back to North Africa. However, as things are wont to do, life got in the way of phase 2 of the project and it has taken nearly 9 years from start to finish of phase 1.

“Sultan” a Barbary lion in the New York Zoological Park in 1906. Public Domain Image.

A little bit of a detour into the nitty-gritty of actually “doing science”. It took months back in 2011 to put together the application case for why we should get funding and a 6-month wait to find out if we were successful. The money to fund this research for two years came from the European Union, before Brexit was anything more than a glint in Farage’s jaundiced eye. The ability to move freely from the UK to Denmark was crucial to this project, and can’t be overstated. This is the reality of doing science in the world today. It relies on international collaboration, free movement, and time to apply for funding. Getting money for research is insanely competitive and each year sees a drop in success rates. Many of the big sources of funding are only given to 5-10% of applicants. Each year, maybe 9 out of 10 grant applications are unsuccessful. Each one of these rejections represents the culmination of hundreds of hours of (usually unpaid) work and the dreams and aspirations of researchers who just want to do science. Even the successfully funded projects come with money for two or three years maximum work. Having to juggle doing the work you are paid (and desperately want) to do, while keeping an eye on the future is incredibly stressful. Most labs, even the great ones, are only one or two missed funding opportunities away from breaking up just from lack of money to cover their overheads. This was the case with my involvement in our study. After the requisite two years of funding I applied to a few funding agencies for more money for related projects with no success. I also applied for lecturing positions with the idea that teaching would still allow time to properly analyse and report on the data we had generated. From 2014 to 2017 I failed to secure anything that would fit the needs of our young family despite dozens of applications and a handful of interviews. In the meantime I took work delivering lecture content (on zero-hours contracts) at a university that declined to interview me for a permanent position teaching the same material. I worked for the excellent charity The Brilliant Club. I taught online courses for another university. I travelled 800km round trips to cover lectures at yet another university. Altogether trying to juggle the need to earn money, be the primary caregiver for our two children, and work on finishing SIMBA was just too much. Something had to give, and of course it was SIMBA and other academic work. It has taken a lot of personal reflection to come to terms with that decision. Despite this, since 2014 I’ve been an author on 24 peer-reviewed papers and reviews including 5 first author, and 2 last author works. I’ve not been idle!

All this is a long-winded way of saying I’ve found that working in science is hard, and many obstacles are put in the way for people that want to do it but have other responsibilities too. It’s taken me a lot of time and mental effort to reconcile this with my own needs and to make peace with the fact that for as long as academia continues to be an insecure career that requires its practitioners to uproot everything every 2-3 years, I don’t want to be part of it. I’m a good scientist, but a poor academic.

Back to the paper. My involvement consisted of countless hours in sterile clean rooms, suited and booted against contamination to extract and amplify DNA from museum samples and permafrost subfossils. The real meat of the work was done by collaborators who analysed the gigabase dataset of lion genomes I helped generate to test our assumptions about lion evolution. While I was flailing around outside of academia, joint first author Marc de Manuel really took the reins and steered the project towards completion. Collaborators in the USA and China gave invaluable access to present-day lion genomes and sequencing facilities to extend the reach of the study. In particular, access to high quality genomes from modern lions from India, Botswana, and Tanzania allowed us to anchor our samples to the surviving modern diversity.

Underneath all that PPE it really is me, about to work on some ancient lion DNA in the Copenhagen clean labs. Image © Ross Barnett

Our study’s conclusions are threefold. First of all we get a very detailed and precise handle on the timing of the separation of cave lions and the ancestors of modern lions. This appears to happen around about half a million years ago and tallies remarkably well with the fossil evidence and appearance of the ancestral cave lion (Panthera leo fossilis) in the bone records of Europe.

Secondly, we applied some pretty complex analyses to the question of whether there is evidence of cave lions and the ancestors of modern lions ever interbreeding. We know from detailed genomic analyses of the other big cats that hybridisation has been rife in the prehistoric past. Jaguar and lion. Lion and tiger. Snow leopard and lion. Mass hysteria!

So given that species with quite different behavioural cues had hybridised it made sense to look at whether cave lions and lions ever interbred after they split. Especially when there were known regions of potential overlap in southwestern Eurasia. Surprisingly, we didn’t find any evidence at all of hybridisation between cave lions and modern lions. This is in sharp contrast to the different lineages of modern lion that we identified. The deepest split, occurring 70,000 years ago, is between lions from West Africa, North Africa and Asia and those from the rest of Africa. This likely represents the influence of central rainforest expansion during the Pleistocene cutting off the west and north of the continent from the rest of the population since lions cannot hunt in densely forested areas. Within these lineages we found evidence of interbreeding: lions from central Africa show mixing between lions from northern African and southern African populations. More weirdly, Asian lions seem to show signs of having mixed with southern African lions. Perhaps as a result of now flooded connections along a southern dispersal route through the Arabian peninsula.

Thirdly, we get an excellent handle on diversity levels within different populations. We found the Indian lion to have incredibly low levels of genetic diversity, reflecting their long history of human persecution and a bottleneck to historic levels of <50 individuals within the past century. Interestingly, we don’t identify any signal of low diversity levels in either the extinct cave lion or extinct Barbary lion, suggesting that they were doing quite well before we came along.

Phylogeny of modern and ancient lions based on their nuclear genomes, showing separation between different lineages.

Thanks to the incredible analyses of my colleague Marc de Manuel and our coauthors we’ve managed to pull together the first paper that has genomes from not one but four different extinct lion groups: the cave lion, the middle eastern lion, the Cape lion, and the Barbary lion. I think I can stop thinking about lions for a while at least.

 

Written by Ross Barnett (@DeepFriedDNA)

Further Reading:

de Manuel, M., R. Barnett, M. Sandoval-Velasco, N. Yamaguchi, F. G. Vieira, M. L. Zepeda Mendoza, S. Liu, M. D. Martin, M. H. S. Sinding, S. S. T. Mak, C. Carøe, S. Liu, C. Guo, J. Zheng, G. Zazula, G. Baryshnikov, E. Eizirik, K. P. Koepfli, W. E. Johnson, A. Antunes, T. Sicheritz-Ponten, S. Gopalakrishnan, G. Larson, H. Yang, S. J. O’Brien, A. J. Hansen, G. Zhang, T. Marques-Bonet, and M. T. P. Gilbert. 2020. “The evolutionary history of extinct and living lions.” Proceedings of the National Academy of Sciences of the United States of America. [Full Text]

Posted in American Lion, Cave Lion, DNA, Homo sapiens | Tagged , , , , , , , , , , , , | 18 Comments

America’s Ass

If you saw Avengers: Endgame, then you probably talked about it with your friends afterwards. The story. The action. The loss. And the ass. Yes. That ass.

Iron Man (Robert Downey Jr) comments on Captain America’s old suit, saying it does nothing for his derriere. A bit of a harsh comment. Fortunately, Ant-Man (Paul Rudd), has Captain America’s back(side), and jumps in with “As far as I’m concerned, that’s America’s ass.” A few scenes later and Captain America (Chris Evans), has a close fight with himself from the past, and wins. Before walking off, he looks at himself, and says “That is America’s ass.”

If you haven’t seen Avengers: Endgame, then that probably sounds like the strangest paragraph you have ever read. Quite understandable. Iron Man. Ant-Man. Captain America fighting himself. But, it’s a little nod of appreciation. It is a fine ass. (If you have seen it, then no doubt that you agree.) And it does link (almost) to this wonderful Pleistocene beast, so forgive the odd introduction.

Captain America (Chris Evans) commenting on his own rear end.

In the beautiful tropical rainforests of North America, 52 million years ago, we see evidence of the very first horses. Much smaller than today’s familiar species, the dawn horse, Eohippus, was tiny – about the size of a wolf. Eohippus had four toes (horses today move on one toe), and would have been quite fast moving through the thick vegetation. This little beast spread far from North America through to Europe, and many different species evolved from isolated populations.

Horses were a hugely diverse group, with numerous species around from 52 million years ago until just a few thousand years ago. North America had several species trotting across the landscape, whilst South America had none. For over 30 million years, South America was an isolated, drifting landmass. It’s own unique flora and fauna evolved here (including sloths and armadillos). South America was slowly drifting northwards towards North America, and around 2.8 million years ago underwater volcanoes and sediment build up created a link to the two huge landmasses. This new link allowed animals from North America to move into South America, and vice-versa.

The Great American Interchange: the animals in blue had moved from North America into South America; the animals in green had moved from South America into North America. (Image Public Domain)

Several species of horse travelled down into South America, with one species evolving that links to our slightly unusual introduction.

As species moved between the landmasses, some became isolated from other populations, and evolved into new species. In South America an unusual horse evolved, Hippidion devillei. As ever with the naming of extinct species, there is some debate. Some researchers prefer to place it in the genus Onohippidium. The distinction? A small indent in their snout indicating a different genus. Those in the Hippidion camp argue that this is too small and variable to warrant a whole different genus. And the debate continues.

Hippidion or Onohippidium, this horse evolved around 2.5 million years ago in South America. Fossils found at Tarija, in Bolivia, indicate that the short legs were adapted to living on hilly environments, rather than open plains. It was also pretty distinct from other horses around. With shorter legs, it looked more like an ass* than a horse. It had a very elongated nasal bone, which hints at a prehensile lip for feeding on trees and shrubs.

America’s ass, Hippidion, with it’s short, stocky legs, and prehensile upper lip. (Image Twilight Beasts)

Eagle eyes readers, who still have America’s ass on their minds (I don’t blame you), will be wondering why I tenuously linked Captain America’s derriere to a horse that evolved in South America. It wouldn’t have worked, but (fortunately I get to keep the introduction), some populations of Hippidion devillei did move north, into the Americas. Fossils have been discovered in California, so this wonderful little ass-like horse, was America’s first ass.

Fossils recovered from sites in South and North America are not very common, suggesting that this species was not as abundant as other species found. This little animal vanished just 8.000 years ago. It’s not a simple story of how. Cut marks have been found on some fossils, showing that humans butchered them – and possibly hunted them. It also seems Hippidion wasn’t around in very large numbers, and the climate was changing which would have affected the already small populations.

Dozens of species of horse galloped, trotted, and scurried, in the northern hemisphere for over 50 million years. Today, there are just 7 species surviving (1 horse, 3 donkeys, and 3 zebra), none of which are native to the Americas where they originated from. Hippidion wasn’t strictly an ass, but it wasn’t far off. It was closely related to modern day horses. It looked like an ass. A mighty fine ass.

Written by Jan Freedman (@JanFreedman)

*Horse is an interesting noun because it generally describes any animal in the Equidae family. It’s a common name, not a scientific name. Any extinct species in this family, we will call it a horse. Common names to animals are given by people to identify them in their local environment. (A ladybird in England, is a ladybug in American. A plant species can have several different common names depending on where you live.) The scientific name tells us what species it is. The surviving members of the horse family have common names, quite simply because they have been around for people to name them: horse, zebra, and donkey. Donkeys, or asses, are in the same genus as horses around today. So, when describing extinct species, we use modern equivalents to compare them too. Hippidion and all the other extinct ‘horses’ don’t have a common name. It wasn’t a donkey. But it also wasn’t a horse. It did, however, look like an ass.

Further reading:

Alberdi, M. T., & Prieto, A. (2000). ‘Hippidion (Mammalia, Perissodactyla) de las Ceuevas de las provincias de Magallanes y Tierra de Fuego.’ Anales Instituto Patagonia, Serie Cs. Hs. (Chilie). 28. pp.147-171. [Full article]

Der Sarkissian, C., et al. (2015). ‘Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids.’ Biological Letters. 11. 20141058 dx.doi.org/10.1098.rsbl.2014.1058

Croft, D. A. (2016). Horned Armadillos and Rafting Monkeys. Indiana University Press. [Book]

Macfadden, B. J. (2010). ‘Pleistocene horses from Tarija, Bolivia, and validity of the genus Onohippidium (Mammalia: Equidae).’ Journal of Vertebrate Paleontology. 17 (1). pp.199-218. [Abstract only]

MacFadden BJ (2013) ‘Dispersal of Pleistocene Equus (Family Equidae) into South America and Calibration of GABI 3 Based on Evidence from Tarija, Bolivia’. PLoS ONE 8(3): e59277. doi:10.1371/journal.pone.0059277

MacFadden, B. J., & Shockey, B. J. (1997). ‘Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence.’ Paleobiology. 23(1). pp77-100. [Abstract only]

Orlando, L, et al. (2008). ‘Ancient DNA clarifies the evolutionary history of American Late Pleistocene Equids.’ Journal of Molecular Evolution. 66(5). pp.533-538. [Abstract only]

Prado, J. L., & Alberdi, M. T. (). Fossil Horses of South America. Springer Link. [Book]

Sanchez, B., Prado, J. L., & Alberdi, M. T. (2006). ‘Ancient feeding, ecology and extinction of Pleistocene horses from the Pampean Region, Argentina. Rev. Asoc. Paleontol. Argent. 43(2). pp.427-436. [Full article]

Shockey, B. J., et al. (2009). New Pleistocene cave faunas of the Andes of Central Peru: radiocarbon ages and the survival of low latitude, Pleistocene DNA. Palaeontologia Electronica. pp.1-15. [Full article]

Weinstock, J., et al. (2005). ‘Evolution, systematics and phylogeography of Pleistocene horses in the New World: a molecular perspective.’ PLoS Biology. 3(8). e241. [Full article]

Posted in Horse | Tagged , , , , , , , , , , , , , , , | 6 Comments

The most (and least) read posts of 2019

We like to share our most read posts, along with our least read posts (so we can share the love). Have a little browse through – all hold wonderful clues to the recent past.

Least read post of 2019

  1. It’s Miller Time: Hugh Miller found something strange. But what was it? A giant deer? A reindeer? Find out in this post!

2. Big find in little China: Discover some of the earliest humans in China, dating back to 100,000 years ago.

3. Forever Young: The beautiful Florida Keys Deer, and how it has evolved to look young.

A beautiful Key Deer (Odocoileus virginianus clavium) on Big Pine Key, Florida. (Image by Joseph C Boone, from here)

4. Mini-beasts, giants, and mega-floods: We all know about mammoths and sabre tooth cats. But what can the tiniest creatures tell us about the ice age?

5. Nice beaver (redux): Read a little about beavers in Britain, and why they vanished.

The most read posts of 2019

  1. The stuff of night-mares: There was once an enormous horse. Bigger than you would ever imagine!

2. Lost as the Moa is lost: The giant, ground-dwelling bird, the Moa, disappeared just around 500 years ago.

3. Remarkable creatures: Armadillos are truly amazing creatures. Giant armadillos? Well, they are remarkable.

One of the largest of the pampatheriidae, Holmesina septentrionalis, compared to a 6 foot tall human.

4. You only live twice: There were some strange creatures in Australia during the Pleistocene. This may be one of the weirdest.

5. The power of wonder: Take a glimpse at ice age art, and see how our ancestors really saw life around them.

 

The three of us at Twilight Beasts wish you a very happy and healthy 2020.

Rena (@JustRena), Ross (@DeepFriedDNA) and Jan (@JanFreedman).

Follow us on Twitter  (@Twilightbeasts)  and Instagram (@TwilightBeasts)

 

 

 

 

 

Posted in Uncategorized | Leave a comment

Ex Profundis

“Tis the part of a wise man to keep himself today for tomorrow, and not venture all his eggs in one basket.

Miguel de Cervantes, Don Quixote

The most perfect thing in nature, arguably, is the egg. A living capsule: it is the complete nursery, foodstore, protector and temporary home. From the tiniest hummingbird to the largest crocodile, the perfection of the egg gives them all a headstart.

Eggs and extinction have a long history together. The 75 or so eggs of the great auk (Pinguinis impennis) changed hands for enormous sums in the 19th century, increasing in investment value as the last living individuals were harried to extinction in Iceland. The auk eggs’ Jackson Pollock camouflage and unique patterning lend them a melancholy beauty noticeable to even the most casual observer. The Victorian mania for oology just one of the many factors that helped to push this species over the edge. Thankfully egg-collecting is a dying hobby; its adherents having decimated some of Britain’s rarest species in their obsession.* UK osprey and eagle nests still need the protection of dedicated wardens to thwart the occasional nest-raider. Eggs attract obsessives, drawn to their perfection. Eggs have stories to tell.

Cervantes is a small town about 100 miles north of Perth in Western Australia. In 1992, three primary school students found an enormous egg (32cm long!) in some dunes beside the beach. Instantly intrigued, the case received much redtop press. Could it have been an example of the Dromornithids, a.k.a. the Demon Ducks of Doom? Perhaps the Pleistocene giant Genyornis newtoni? Or from the Miocene giant Dromornis stirtoni? Both of these extinct Australian birds laid large eggs, with fossil eggshells of Genyornis contributing data on the timing of the Pleistocene extinction in Australia.

Alas, it appeared clear that the Cervantes egg was not from either of these ancient giants. The dune system the egg was found in was Holocene in age (i.e. from the last 10,000 years) and radiocarbon dating showed that the egg was a very young 1,928±73 years old, dating to the 1st or 2nd century AD. Long after any giant Australian birds were around (except the emu, Dromaius novaehollandiae, which lays big eggs, but nowhere near as giant as the Cervantes egg). Close inspection of the outer structure of the egg, and its dimensions, told a much stranger tale. This egg was from Aepyornis maximus, the Madagascan elephant bird.

Velizar Simeonovski’s wonderful reconstruction of communal nesting in Aepyornis, from the book Extinct Madagascar.

Madagascan beaches are still full of elephant bird eggshell as this recent picture shows. Image © James Haile

Regular readers will know that the largest egg, nay the largest single cell, ever to evolve is that of the extinct Madagascan elephant bird (Aepyornis maximus, I refrain from using the shiny new taxon of Vorombe titan, until more data is forthcoming). The eggs of Aepyornis command high levels of devotion. Used as water carriers by native Malagasy people prior to contact (they can carry up to ten litres!), Western scientists have long coveted them. While Madagascan beaches are still littered with the eggshell from successful hatcheries, complete eggs are much rarer. Around 80 are found in museum collections worldwide. Another 30 or so are thought to be in private collection. Sir David Attenborough famously has one, gifted to him when filming Zoo Quest, and radiocarbon dated a few years back. Although it is now rightly illegal to export complete elephant bird eggs from Madagascar there are quite a few of these relics still circulating in the global antiquities market. Not to mention the steady trade in “reconstructed” eggs, made from piecing together any old bits of Aepyornis eggshell until a facsimile of a whole egg is produced. Complete and intact eggs can fetch enormous prices. $205,000 was paid for one intact egg in 2014. Two centuries of brisk trade has meant that Aepyornis eggs can be found in nearly all the major museums of the world.

So, the Cervantes egg was from a Madagascan elephant bird. How on earth did it end up in Western Australia?

Remarkably, it’s not the only example of long-distance egg travel to this part of WA. Another Aepyornis egg was found in the Scott River south of Perth in 1930, near the town of Augusta. The intact, buoyant, rugby-ball-sized floaters must have ridden the predominantly West to East South Indian Ocean currents the 5,000 miles from Madagascar to Australia. Distinctive King Penguin (Aptenodytes patagonicus) eggs have made a similar crossing from the Kerguelen islands to Augusta, showing that the route is something of a conveyor belt**. The Cervantes and Scott River eggs remind me of that hoary old tale by H. G. Wells, “Aepyornis island”. In the story, a specimen collector finds three intact elephant bird eggs, and through a series of misadventures floats away from Madagascar and onto a deserted island. On the island, one of the eggs hatches and the Aepyornis chick becomes the collectors companion for a time. Perhaps someone should check on the Cervantes and Scott River eggs. Just in case.

The Scott River egg in 1930. Photo by Douglas Elford, WA Museum.

How the southern Indian Ocean currents could have swept eggs from Madagascar and the Kerguelen islands to Western Australia.

*In the UK it is illegal to collect wild bird eggs, and illegal to hold any wild birds eggs collected on or after 1954. For more information, see RSPB.

**If nothing else these enormous sea crossings should show that taphonomy, the study of how fossil sites have formed can be incredibly complex.

Written by: Ross Barnett (@DeepFriedDNA)

Further Reading:

Burney, D. A., L. P. Burney, L. R. Godfrey, W. L. Jungers, S. M. Goodman, H. T. Wright, and A. J. Jull. “A Chronology for Late Prehistoric Madagascar.” J Hum Evol 47, no. 1-2 (Jul-Aug 2004): 25-63. [Abstract]

Long, J. A., P. Vickers-Rich, K. KHirsch, E. Bray, and C. Tuniz. “The Cervantes Egg: An Early Malagasy Tourist to Australia.” Records of the Western Australian Museum 19 (1998): 39-46.[Full Text]

Miller, G. H., J. W. Magee, B. J. Johnson, M. L. Fogel, N. A. Spooner, M. T. McCulloch, and L. K. Ayliffe. “Pleistocene Extinction of Genyornis Newtoni: Human Impact on Australian Megafauna.” Science 283 (1999): 205-08. [Full Text]

Schläpfer, K. “Aepyornis Eggs: History, Characteristics and Market.” (2015).[Full Text]

Wells, H. G. “Aepyornis Island” 1894 [Full Text]

Posted in Elephant Bird, Uncategorized | Tagged , , , , , , , , , , | Leave a comment

Dreamcatchers

If you think of the weirdest mammal you can, chances are a tapir would pop into your mind. They are pretty odd. Kind of like a mad-scientist’s experiment between a pig and an elephant gone wrong.

Perhaps naively, I had always assumed there was just one species, the tapirs living in the Amazon (Tapirus terrestris, the Brazilian tapir). I learnt that there are actually four different species in all, and they are not just found in Brazil. Baird’s tapir (T. bairdii) can be found across Mexico and a few countries in the north of South America. There’s the mountain tapir (T. pinchaque) of South America, with it’s woolly shaggy hair covering it to keep it warmer in the cooler mountain ranges. And the Malayan tapir (T. indicus), the last surviving tapir from Asia. All these beautifully-strange species are vulnerable to extinction.

The Brazilian tapir, Tapirus terrestis, the tapir I’ve seen in zoos and on TV. Just one of four tapir species! (Image Bernard Dupont. Public Domain)

Tapirs are full of really neat features. My favourite, and the most diagnostic, is that large nose: it’s proboscis. Much more flexible than an elephant’s, it can move in any direction to grab onto branches to eat leaves. Large, splayed toes spread the body weight allowing these fairly large mammals to live in wet, boggy, muddy environments. Being mostly nocturnal, their eyes are cloudy-looking and they have rather poor vision. That large muscle protruding from their face makes up for it: tapirs have an excellent sense of smell. They use it to search for food or for a mate. Tapirs will mate in water or on land, and they can mate several times whilst the female is on heat, for a rather modest length of time – between 10 and 20 minutes. (In humans, the average is somewhat disappointing: around 6 minutes. I hasten to add that this is an average.)

Closely related to rhinos and horses, the first fossils of the tapir family (the Tapiridae) are found in 50 million year old rocks in North America. They were a hugely successful group. Several species evolved, and they spread far across the northern hemispher. During times of low sea levels, species made their way over into Asia, and even Europe. Around 2.9 million years ago, when North and South America joined together, tapirs made their way into South America for the first time.

Fossil tapir skull found in South Carolina. On display at Charleston Museum. That large hole in the head is the nasal cavity, and supports the flexible but short trunk. (Image Jan Freedman)

With so many species in the last 50 million years, it is no surprise that there was an enormous one, Tapirus augustus (sometimes referred to as Megatapirus augustus). This was a ruddy big tapir, around 1.5 metres tall, and 3 meters long.

The giant tapir, Tapirus augusus, was almost as tall as a human. (Image Twilight Beasts)

A plethora of fossils across Asia give us an evolutionary story for this giant. Huge grasslands across Asia during the early Pleistocene, around 2 million years ago, would have helped the spread of tapirs across the continent. A population of one species, T. sanyauensis, appears to have increased in size in the Early to Mid-Pleistocene, the ancestor of T. sinensis. A few hundred thousands years later, a population of T. sinensis was isolated from other populations and continued to get bigger, and during the Mid to Late-Pleistocene we see the giant T. augustus. This is a very simplified story, and in reality many isolated populations just carried on without changing much, whilst others died out. Evolutions isn’t a neat ladder leading from one species to another: it’s a very busy, very complicated tree.

We know a bit more about the giant tapir thanks to a myriad of sites across China hold fossils being found alongside hominins, so they are well recorded and published. Fossils of Homo erectus have been excavated at Gongwangling in Eastern China, dating between 1.15 and 1.63 million years old. Their landscape was share with some species found in the region today, along with extinct deer, huge hyenas, long-vanished rhinos, and the giant tapirs. Human teeth were excavated at Huanglong Cave in Eastern China, dating between 100,000 and 40,000 years old. Along with several human teeth, likely belonging to our species H. sapiens and not H. errectus, stone tools have been recovered along with over 25 different species of large mammals. Species of extinct rhinos, deer, proboscids, hyenas, and the giant tapir have all been found. Many of the bones are fragmentary, indicating that this cave may have been a home for groups of H. sapiens at some points in the past. And these groups may have been bring food back to this cave, giving a glimpse into the range of animals they ate.

From the species found at these sites, we can work out the likely environment that the giant tapir lived in. The assemblages indicate that the environments were not much different from the region today. These giant tapirs lived in warm, sub-tropical forests.

The funky skull of the giant tapir. (Image Ryan Somma. Public Domain)

Our giant tapir was around until relatively recently, shuffling in the forests of Asia until just around 4000 years ago. It’s difficult to identify exactly why they went extinct. Humans have been suggested as the cause of the extinctions of many large mammals, but here, humans (H. erectus and H. sapiens) and giant tapirs overlapped for hundreds of thousands of years. Yet there is evidence that they were food in the past, just as the four species are hunted by humans today. Habitat loss from changing climate or destruction by humans for farming may have played a role. Or it may have been a combination of both. For large mammals, with slower breeding than smaller ones, these pressures happening unnaturally fast will have had an impact on populations.

Tapirs and humans have had a long history of living alongside one another. And they are very symbolic in some cultures. In some Asian countries, there are stories of tapirs eating nightmare’s. It’s an interesting and quite scary bit of folklore, but quite unusual for a herbivorous animal. It’s not difficult to imagine it’s origins, as stories were told round a fire, with the rustle of leaves close by. The flickering flames briefly lighting the well camouflaged, weird shaped body of a tapir. With their solitary lifestyle, tapirs are a little bit mysterious. I like to imagine what it must have been like to hear that rustle in the forest of a giant tapir passing by a group of people quietly telling stories.

Written by: Jan Freedman (@JanFreedman)

Further reading:

Bien, M. N., & Chia, L. P. 1938. ‘Cave and rock-shelter deposits in Yunnan.’ Bulletin of the Geological Society of China. 18. pp.325-347. [Full article]

Corlett, R. T. 2007. ‘The impact of hunting on the mammalian fauna of tropical Asian forests.’ Biotropica. 39(3). pp.292-303. [Full article]

Hooijer, D., A. 1951. ‘Two new deer from the Pleistocene of Wanhsien, Szechwan, China.’ American Museum Novitates. 1495. pp.1-18. [Full article]

Hulbert, R. C., Jr. 1995. ‘The giant tapir, Tapirus haysii, from Leisey Shell Pit 1A and other Florida Irvingtonian localities.’ Bulletin of the Florida Museum of Natural History. 37(2). pp.515-551. [Full article]

Jin, C. Z., Pan, W. S., Zhang, Y. Q., et al. 2009. ‘The Homo sapiens Cave hominin site of Mulan Mountain, Jiangzhou District, Chongzuo, Guangxi with emphasis on age.’ Chinese Sciences Bulletin. 54. pp.3848-3856. [Full article]

Lord Cranbrook & Piper, P. J. 2013. ‘Paleontology to Policy: the Quaternary history of Southeast Asian tapirs (Tapiridae) in relation to large mammal species turnover, with a proposal for conservation of Malayan tapir by reintroduction to Borneo.’ Intergrative Zoology. 8. pp.95-120. [Full article]

Lui, W., et al. 2015. ‘The earliest unequivocally modern humans in Southern China.’ Nature. 526(7575). pp. 696-699. [Full article]

Shen, G., et al. 2002. ‘U-Series dating of Liujiang hominid site in Guangxi, Southern China.’ Journal of Human Evolution. 43. pp.817-829. [Full article]

Xianzchu, W. U., et al. 2006. ‘Huanglong Cave, a new late Pleistocene hominid site in Hubei Province, China.’ Chinese Sciences Bulletin. 51(20). pp.2493-2499. [Full article]

Zhao-Yu, Z., et al. 2015. ‘New dating of the Homo erectus cranium from Lantian (Gongwangling), China.’ Journal of Human Evolution. 78. pp. 144-157. [Full article]

Posted in Giant tapir | Tagged , , , , , , , , , , , , , , , | 2 Comments

On the dhole

It’s funny when you think about it. Canids famously have a swimming style named after them but they hardly ever made it to any islands. Compared to elephants, hippos, and tortoises and the ease with which they seem to have colonised remote archipelagos, dogs don’t seem to have strayed far from land. Except when moved by people. Natural colonisations are few and far between and more likely to be the result of getting stranded after sea level rise (think of the grey foxes of the California channel islands or the extinct Falkland islands wolf). One exception that breaks this rule lived in Pleistocene Sardinia, a Mediterranean island that has never been connected to the mainland. In amongst the dwarf hippos and dwarf elephants that populated many med islands, the Sardinian canid is an anomaly. It’s not even a wolf, the one wild European canid that people are familiar with. It’s something different. Something from a separate branch that until the Holocene was a vital part of the European fauna. Sardinia had its own dhole.

Sardinian dhole (Cynotherium sardous) Reconstruction by Mariomassone CC-BY-SA 4.0

Dholes are the “Red Dogs” of Kipling’s Jungle Book: fierce and efficient killers that today live in Indonesia and Mainland Asia. Looking like a red fox on steroids, dholes are pack animals that can easily take down buffalo and deer. In the Pleistocene they were also common in Europe, and roamed even into North America*.

The Dhole (Cuon alpinus). Image ©Ross Barnett

Dholes (Cuon alpinus). Image ©Ross Barnett

Sardinia’s dhole, Cynotherium sardous, is not a direct relative of the modern dhole, Cuon alpinus. Instead it probably shares a common ancestor with the dholes and painted dogs (Lycaon pictus). This ancestral form, Xenocyon lycaonoides, was widespread in Europe during the early Pleistocene and presumably doggy paddled its way to Sardinia. At the point in time during the Pleistocene, Corsica and Sardinia were joined into a larger island due to lowered sea levels. On arrival, Xenocyon found itself in an insular environment bereft of large prey animals. Instantly, natural selection worked its magic and strong selection pressure started favouring smaller individuals who could more efficiently hunt small prey, and required fewer calories to reach maturity. It’s a classic example of the island rule. The big get small and the small get big. Remarkably consistent across elephants, mammoths, hippos, deer, rodents, birds, and yes, humans too. The famous hobbit (Homo floresiensis) of Flores shows what happens to large human like species under the selection regime of an isolated island.

Size was just one aspect modified by natural selection in the Sardinian dhole. Luckily we have a very good series of fossils from the skull and post-cranial remains of many individuals to look at. They clearly show other adaptations that are unique among canids. Firstly, the neck bones show signs of being extremely flexible and hyper-strong. Additionally, muscle attachment scars show that the shoulder had a wide degree of freedom of movement and that the triceps were enormous. The triceps is the muscle that does the opposite job to the biceps- it’s the muscle you would use when pushing yourself up off the ground during a push up. It’s the one that extends the arm. All this points towards an animal where explosive leaps from a stalking stance allowed it to quickly grab and shake small prey to death.

Some of the skeletal adaptations of Cynotherium sardous. Image by George Lyras & Alexandra van der Geer CC-BY-SA 2.0

The end result of island dwarfing for the Sardinian dhole was a reduction in size to an estimated 10kg in the latest adult specimens known. Despite ruling their tiny kingdom for most of the Pleistocene, they seem to disappear around 11,000 years ago. Just when humans arrive on the island.

The results of island dwarfing on Sardinia from the large ancestral Xenocyon lycaonoides to Cynotherium sardous. Image by George Lyras & Alexandra van der Geer CC-BY-SA 3.0

*Bizarrely, dholes are known from Beringia, and one site in Mexico (San Josecito cave). The fossils are super diagnostic so there can be no doubt that they are what they are but that’s one hell of a geographic gap for what must have been a widespread species. Really makes you think about the gaps in the fossil record.

Written by Ross Barnett (@DeepFriedDNA)

Further Reading:

Evolution of Island Mammals: Adaptations and Extinction of Placental Mammals on Islands. edited by A. A. E. van der Geer, G. A. Lyras, J. de Vos and M. D. Dermitzakis: Wiley-Blackwell, 2010. [Book]

Lyras, G. A., and A. A. E. van der Geer. “Adaptations of the Pleistocene Island Canid Cynotherium Sardous (Sardinia, Italy) for Hunting Small Prey.” Cranium 23, no. 1 (2006): 51-60. [Abstract]

Lyras, G. A., A. A. E. van der Geer, M. D. Dermitzakis, and J. de Vos. “Cynotherium Sardous, an Insular Canid (Mammalia: Carnivora) from the Pleistocene of Sardinia (Italy), and Its Origin.” Journal of Vertebrate Paleontology 26, no. 3 (2006): 735-45. [Abstract]

 

 

Posted in dhole, Extinction, Giant Maltese Dormice, Hippopotamus, Mouse Goat | Tagged , , , , , , , , , , , | 4 Comments

Interview with the mammoth

Archaeology brings you some strange and marvellous places. They never told me that in the prospectus. I’m currently writing this, away up north in Kikinda, in the Banat province of Serbia, a region of vibrance and colour and richness of history, matched by the warmth and hospitality of its people. Whether it’s the fields of swaying sunflowers, making the landscape look like a golden sea, or the scarlet sunsets illuminating the deep bark of the plum trees, now heavily laden with darkest rich purple fruit, Serbia has utterly enchanted me. Any nation which can boast burek, rakija, Urnfield culture and mammoths is alright by me.

Voyvodina, Lush and green in summer!

Getting a mammoth interview!

Oh, I didn’t tell you about the mammoths, did I? Serbia wasn’t always the land of luscious fruit and vegetation it is now. Climate changed through the Holocene of course, and when humans arrived they altered the landscape by way of farming and animal husbandry. Once this dazzlingly verdant country was cold steppes, which was when Kika and her kind held sway. It’s an interesting area for the Ice Age as it was a boundary which allowed steppe animals to graze. Kika is a near-as-dammit complete ( 90% of bone present) Mammothus trogontherii found almost on the doorstep of Kikinda museum.Standing at about 4.7m in height, weighing over 7 tons when alive and tusks of over 3.5 m in length, Kika was quite a powerful animal, and lived to ripe old age of 64 before she was snagged down in a marsh, where it’s likely predators did what predators do, hence the missing shoulder bones. She’s frankly an icon here, her image is used everywhere, and I’m pretty lucky to get an up close and personal interview with this Very Important Proboscidea. So with a little imagination (because we all know fossils, artefacts and old things talk, if we listen!) here’s the transcript!

TB: Kika, first of all thank you for this interview, it’s not every day I get to meet such a European star of the Pleistocene!

K. Thank you for having me on your blog. I am very proud to represent my kind, the steppes mammoth, Mammothus trogontherii as the symbol of the human settlement Kikinda. They even have a Mammoth Fest each year to mark my (re) birthday!  In fairness I don’t remember my own birthday – and they say elephants never forget. I have forgotten, perhaps, because it always was cold! Now I celebrate in sunny September each year!

[laughs quietly]

I find the celebrity very strange, I am just a humble mammoth, but I am wise, having lived a long life breathing (I was likely about 64 of your human years when I fell asleep in the Cold Time). They tell me this as my tusks have many, many rings, which show my age, just like a tree. But I very much enjoy now these times when people from all over the world come to visit me and I share my memory and wisdom. It also pleases me to see my land look so green and beautiful, so much fruit and richness of trees and plants, we could only dream of such places. So much talk now among my human friends of climate change,  I worry that careless humankind will harm this, and it will again be like the Cold Time , when all hungered.

A humble mammoth – Kika’s replica in the courtyard of Kikinda Museum

TB: So, can I ask you about the deep prehistoric past of Serbia? What do you remember about it?

K: I lived almost a half a million years before this present time. We existed even before what you call the woolly mammoth, Mammuthus Primigenius . The humans say the great woolly mammoths are descended from us. I think we were better looking, but that is only my opinion! Although the long hair might have suited me? What do you think?

TB: * nods agreement*

K: The Balkans and Carpathians were very different indeed. No dark purple plums falling from trees, no ripe quinces like today – oh how I wish I was not bones, and could taste those! During the Cold Time ice spread from the Alps and Dinara mountains, across the Balkans. All the mountains of eastern Serbia and Bulgaria were covered in ice. Here we had steppes grasses, and while summers were cool they were welcomed greatly by all creatures. 10C was balmy for us, providing vegetation other than the grasses. Winters were cold , but not as bad as the frozen lands northwards. How did any living thing survive those times? I am still surprised at the temperatures here in modern Serbia now! In the summer, I see the people eating frozen milks, and wearing such light coverings, I cannot help but wonder if the sunshine would have taken the ache from my poor old joints! I was a little slow with rheumatism. It was my undoing, of course as Serbia also had marshes, which were not easy to get out of. Who knows? I may have breathed well past 70 years had it not been for those marshes! But I cannot complain, we ruled those grass lands, along the basins and river valleys of Pannonia . I have friends who know of Celts and Romans and all the peoples who came here through the millennia when I slept – they called my homeland the Pannonian Basin. The humankind and their animals, they made their homes here too, and occasionally found the remains of our kind, and wondered that we ever walked the earth – I suppose we do seem a little improbable!

I hear my friends in the Museum of Kikinda call those ice free plains of the Balkans ‘refugia’. And they were indeed sanctuary for many creatures, although it makes me sad our kind no longer walk the earth. I led the herd, as a grande dame should. Some of the creatures I am glad no longer exist here, for they had blood in their minds and always hungered. I think the little street cats, when they lie dreaming amidst the flowers in the museum gardens in sunshine, imagine themselves as the great fanged cats of the Cold Time. But they are little, and very sweet, and only the scuttling insects fear them.

This is not a sabre toothed cat, although Kika thinks it might want to be!

TB: How did you come to be found again after all that time?

K: Oh that is a strange story! Years and dates mean nothing to me now, but I have been told that your year of 1996, humankind were making holes in the ground to create a home for a humans called Toza Markovic” – you call this kind of home a factory? They make bricks which now make human homes. In my day, humankind made homes in caves and dug out shelters. I admit, I never saw them myself, but I knew some of the great deer who saw them for themselves. They were not very keen on humans; they said they were smelly little bad tempered things. I cannot judge, I never met one when I was breathing – this is just what the great deer said, but they were  terrible ones for cuss words! Anyway! To make this factory, the humans dug holes like the great sloths, only 21m deep! They really were digging into the past, for soil is like a time machine, it holds many secrets of plants and bones. I was found there, in a layer of the blue clay which is what was left of our old marshland, and they found me there almost as I was when I entered the long sleep in the mud. I had become old and tired and not very fast, and I sunk into the sticky muddy water, and that is where I left the Breathing Way, until I awoke as Wise Bones – you call us fossils, but we carry great wisdom within us.

Wise bones

When they saw me, they were very excited, as I was very much complete apart from a few bones, which the wretched local hyenas may have made off with. Not that it ruins my looks – I rule this museum, and my image represents Kikinda – and where are they now, eh?

Anyway, the humans formed a herd of their own to protect me, with help from an even larger herd, the humans call the European Union. They helped the Kikinda municipality, the National Museum of Kikinda where I now live, the regional chamber of economy, Natural History Museum in Belgrade ( I have not been there, they say it is beautiful but very large and noisy) the Faculty of Philosophy in Belgrade University, and of course the company “Toza Markovic” who now owned the land I slept in. We all share a love for our past, and well … it’s my past. I am very grateful they have worked so hard to show what my time was like.
All of these people who want to tell the story of the Cold Time! Humans call themselves palaeontologists, archaeologists, cultural tourism and marketing experts – even people who made moving pictures of me! I do enjoy being in Kikinda. I am sure Belgrade would be beautiful, if you were a mammoth from what would become Belgrade! But this is my home. I ruled my herd here, and I can still give a good stern stare down my tusks to the unruly or inattentive, be they small human children or learned doctors!

TB: What would you like to tell the readers of Twilight Beasts?

K: I would love them to come visit me here in Kikinda! My human friends here would like that too, as there are many layers of history they can tell of. Just as during the Cold Time this land was a bridge between the frozen lands and the steppes, where life was possible, so too it became a bridge for humans, travellling east to west on the little Tarpan horses (and I found that they are gone  too – this also makes me sad, they were always so friendly, carried so much gossip about new grazing grounds, although they were, mostly , how do you say now, airheads?). The humans brought metals and stories and often bloodshed, even more bloodshed than the big cats of my time, but they changed history. This land became the corridor which created Europe as it is understood today – I learned that from watching the stories about the People of the Urns, who left their Unbreathing to rest in great clay pots, with their favourite objects. And after them, so many other people it makes my tusks shake with wonder!

A rather excellent simulation of an Urnfield burial, Bronze Age Serbia, in Kikinda Museum.

My history is your history – we all are pages in this story, which get turned for the next generation, carrying that story ever forward. Please, come meet me here and chat with me and my human friends!

Written by Rena Maguire (@JustRena)

Some refs for further reading!

Kmeťová, P., 2013. „Masters of Horses “in the West,„Horse Breeders “in the East? On the Significance and Position of the Horse in the Early Iron Age Communities of the Pannonian Basin. Interpretierte Eisenzeiten. Fallstudien, Methoden, Theorie. Tagungsbeiträge der5, pp.247-258. [Full article]

Sümegi, P., Gulyás, S., Molnár, D., Náfrádi, K., Törőcsik, T., Sümegi, B.P., Müller, T., Szilágyi, G. and Varga, Z., 2017. Ice Age Terrestrial and Freshwater Gastropod Refugia in the Carpathian Basin, Central Europe. In Biological Resources of Water. IntechOpen. [Full article]

Posted in Steppe Mammoth | 1 Comment